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We present a method of optimal tracking for chaotic dynamical systems with a slowly
drifting parameter. The net drift in the parameter is assumed to be small: this makes
detecting and tracking the drift more di$cult. The method relies on the existence of
underlying deterministic behavior in the dynamical system, yet neither requires a system
model nor develops one. We begin by describing an experimental study where a heuristic
optimality criterion gave good tracking performance: the tracking method there was based
on maximizing smoothness and overall variation in the drift observer, which was found by
solving an eigenvalue problem. We then develop a theory, based on simplifying assumptions
about the chaotic dynamics, to explain the success of the tracking method for chaotic
systems. For signals from deterministic systems that are su$ciently complex in a sense that
we make precise, typical drift observers provide poor tracking performance and require the
drift to be particularly slow. In contrast, our theory shows that the optimality criterion seeks
out a special drift observer that both provides better tracking performance and allows the
drift to be appreciably faster. For periodic or quasiperiodic systems (no chaos), good tracking
is easily achievable and the present method is irrelevant. For stochastic systems (no
determinism), the optimal tracking method does not asymptotically improve tracking
performance. Exhaustive numerical simulations of a simple drifting chaotic map, "rst without
and then with stochastic forcing, show agreement with theoretical predictions of tracking
performance and validate the theory.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

We wish to track a slowly drifting parameter in a dynamic system using observations of only
the fast variables in the system. Formally, we consider systems governed by maps of the form
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where x is a vector of &&fast'' variables, � is a slow scalar variable, 0(��1 governs time scale
separation between the fast and slow variables,F andG are unknown but well-de"ned functions
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that are as smooth as necessary, and �
�
is a random variable that represents input noise to

the system. In this paper, we will take �
�
"0 except for one demonstration in section 7.2.

We are interested in tracking small net changes in �, using observations of x and no
detailed knowledge of F andG. That is, we are interested in situations where we believe that
an underlying deterministic model exists, but neither know what it is nor wish to "nd it: we
are in the middle ground between deterministic, model-based, parameter estimation on the
one hand and purely statistical data analysis on the other.
As motivation, in systems with evolving damage, &&slow'' damage variables (e.g., a crack

length) act like drifting parameters in a &&fast'' system (e.g., a rotating shaft). Typically, the fast
variables x (e.g., vibrations) are directly monitored while the slow variable �must be indirectly
estimated. Thus, monitoring slow damage evolution is equivalent to tracking slow parameter
drift. Note that modelling and parameter estimation in many systems of practical interest� is
not a trivial matter; as such, our focus on trying to track drift without actually developing
a detailed model for the drifting system is in line with practical considerations.
The problem of tracking parameter drift in the context of machinery condition

monitoring is an active applied research topic (with, e.g., regular conferences devoted to the
topic [1, 2]). The conceptually simplest approach to tracking parameter drift is to
repeatedly identify the parameters of the system as they slowly drift. The problem of
non-linear system identi"cation and parameter estimation is certainly not new (see, e.g.,
references [3}6]). In the literature, several di!erent approaches to parameter estimation in
dynamic systems have been reported (see, e.g., references [7}13]). All these methods can, in
principle, be applied once the structure of a model for the system is available. There are also
many papers that address the problem of damage detection in speci"c classes of systems.
For some recent examples in the area of structural dynamics, see references [14}23].
Finally, there are many papers that focus on straightforward techniques of time}frequency
domain data analysis or statistical methods to detect damage (e.g., references [24, 25]), as
well as various techniques motivated by ideas and results from dynamical systems theory
(e.g., references [26}31]) that provide varying levels of ability to detect and monitor slowly
changing dynamics.
Here, we focus on tracking slow parameter drift in the presence of chaotic dynamics. We

concentrate on systems that are di$cult to model accurately, or for which a model structure
is not known, so that direct estimation of relevant parameters is not feasible. We would like
to avoid ad hocmethods and "nd a technique that has some demonstrably superior tracking
performance. An issue which we have not seen discussed in the health monitoring literature,
but which we address here, is the way in which chaotic dynamics (in a sense that we de"ne in
section 4) can make parameter tracking di$cult when compared to systems with regular
dynamics.
In this paper, we demonstrate that the statistical convergence properties of chaotic

signals make it di$cult, on the one hand, to track drift using typical drift observers, but on
the other allow the existence of a special (optimal) drift observer whose performance is much
better, asymptotically for small slow drift and large data set size, than that of typical drift
observers. In addition, we show that this optimal drift observer can be found using
a straightforward calculation that is well suited to direct experimental application.
To our knowledge, there is no prior work that provides a general, theoretical, and model-

based explanation for the success of a simple, heuristic, and data-based tracking procedure for
chaotic systems, where the success of the procedure is crucially dependent on the existence of
deterministic chaotic dynamics: that, in a line, summarizes the contribution of this paper.
�Such as internal combustion engines, gearboxes, turbines, machine tools, polluted rivers, stock markets, and
insect populations.



Figure 1. Experimental set-up.
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2. BACKGROUND

In section 2.1, we de"ne some terms used in the rest of this paper. A new optimal method
for tracking parameter drift was developed and tested experimentally in reference [32].
Since the results from that work provide the main motivation for the theory presented later
in this paper, in the remainder of this section we brie#y describe the experiment and
summarize the results.

2.1. TERMINOLOGY

The directly measured fast variable x is a signal. The signal is quantitatively characterized
using some suitable statistical measures or features: these might be, e.g., its r.m.s. value, its
autocorrelation, etc. Several features together are called a feature vector. Each feature vector
is computed from a record consisting of a "nite number of samples. As the system drifts,
many records are collected, and as many feature vectors are computed. A scalar function of
a feature vector is called a tracking metric or a drift observer if its graph versus the
record-averaged graph of � is one to one. Ideally, we would like this graph to be a straight
line with non-zero slope.

2.2. EXPERIMENT

The experimental system studied in reference [32] was a cantilevered beam with sti!eners
that roughly constrained it to one degree of freedom (d.o.f.), with a two-well potential
created with permanent magnets. One magnet was augmented by a battery powered
electromagnet. The system, mounted on a shaker, was forced at 5)6 Hz. The beam
intermittently impacted a hard stop. The set-up is shown schematically in Figure 1.
For this system, the forcing amplitude was set to obtain apparently chaotic motions. The

battery drained itself over several hours, weakening the electromagnet (thus a!ecting the
system dynamics). Strain gauge output and battery voltage were sampled at 180 Hz,
digitized and stored. In this system, the slowly draining battery strength acts as a drifting
parameter. The strain gauge monitors the beam's de#ection (the fast variable x).

2.3. NEW HEURISTIC TRACKING METHOD

Let x (k) denote the discretely sampled strain gauge output. Our task is to process the data
x(k) in order to obtain, over time, a representation of the drift process (battery discharge).



Figure 2. (a) Graphs of some columns of matrix > (d"column number, 6, 12 and 24). (b) Eigenvalues of
(A

�
, B

�
). (c) Voltage (==) and tracking metric (� � �). (d) Calibration curve.
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We divided (see reference [32]) the total data into 160 records (about 840 forcing periods
each). For each record, we computed the autocorrelation of x, i.e., we averaged
x(k)x (k#d), for d"1, 2, 3,2, 32 (d"32 is about one forcing period). This gave 32
vectors (160�1); from these vectors we subtracted their means, and scaled them to
unit norm. We arranged these in a 160�32 matrix, called >. Thus, element >

��
represented

the mean value over record i, of x(k)x (k#j ), mean-subtracted and scaled. Each row
of > was a feature vector, and each column represented the time history of one particular
feature.
The graphs of the columns of> were non-smooth, and unsuitable for tracking drift (three

of them are shown in Figure 2(a)). Of them all, d"24 provides best tracking, but that is
known in this case only because, by experiment design, we separately monitored the battery
voltage.
Thus, each feature itself was a poor tracking metric or drift observer. Next, we considered

candidate drift observers that are linear combinations of the features, i.e., given by v">c.
Note that since the underlying drift process is smoothly varying, good drift observers must
vary smoothly as well. We therefore asked: can smoothness be used as a criterion for
selecting a suitable drift observer?
To this end, we took the 159�160 discrete derivative matrix= given by

="

1 !1 0 0 2 0

0 1 !1 0 2 0

� � �

0 0 2 0 1 !1

.

We minimized, with respect to c, the ratio

g (v) :"
�=v��

�v��
. (2)

The rationale was that if v is jagged or non-smooth, then �=v� is high. Meanwhile, since
v has zero mean, �v� is a measure of its total variation. In minimizing g, we maximize
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smoothness and overall variation, and expect to obtain a good tracking metric or drift
observer. The minimum of g is the smallest generalized eigenvalue of (A

�
, B

�
), where

A
�
:"(=>)�(=>) and B

�
:">�>. The corresponding eigenvector gives the optimal c and

hence, v (note that the minimization is with respect to the 32-dimensional c, which is
unconstrained; the 160-dimensional v is constrained by the relation v">c).
Figure 2(b) shows the eigenvalues of (A

�
, B

�
) obtained in reference [32]. The smallest one

is much smaller than the next, implying that the calculation is robust. The optimal metric,
which happens to be 4)5 times better (in an r.m.s. sense) than the d"24 column of >, is
plotted in Figure 2(c) with circles; the measured battery voltage (mean-subtracted and
normalized) is plotted with a heavy gray line. Figure 2(d) shows these quantities plotted
against each other: the curve is linear.

3. SCOPE OF THIS PAPER

Based on the experimental results summarized in the previous section, in this paper we
develop an asymptotic theory for the performance of tracking metrics. These metrics are
calculated by averaging suitable scalar functions of the measured fast variable x over
a number S of records of sizeN each (S andN are both large). Over each record, the drifting
parameter is treated as constant (i.e., the system is treated as stationary; the drift rate and
net drift are both small). The values of the tracking metrics calculated for the di!erent
records are not constant, but change slightly from record to record. Tracking this change
enables indirect tracking of the drifting parameter. Within this framework, the development
of this paper may be summarized as follows:

1. On averaging stationary random quantities in samples of size N, the averages

converge at least as fast as 1/�N (by the central limit theorem). But the central limit
theorem does not preclude faster convergence for some signals from some systems. For
example, averages of periodic or quasiperiodic signals converge like 1/N.

2. Because of the statistical convergence properties of chaotic systems (as discussed in

section 4), typical tracking metrics converge like 1/�N, and tracking is poor. However,
for certain special choices of tracking metrics, convergence is faster and tracking
quality improves dramatically. In this paper, we show that these special
tracking metrics are, in fact, asymptotically equivalent to the heuristically obtained
tracking method of the previous section (which, as we have shown, can be found easily
be solving an eigenvalue problem).

3. For periodic or quasiperiodic systems, convergence is already fast, and the above
method is irrelevant or unnecessary.

4. For stochastic systems (whose statistical convergence properties are like those for
chaotic systems, but which lack determinism), the tracking method does not provide
asymptotically better tracking quality.

5. The asymptotic theory developed in this paper predicts items 2}4 above, and provides
scaling rules for the tracking performance in these cases. These scaling rules have been
veri"ed with detailed numerical simulations of some simple systems.

4. STATISTICAL CONVERGENCE AND OUR DEFINITION OF CHAOS

In qualitative terms, chaos is associated with time series that can be thought of as lying
midway between regular and stochastic motions. Technically, of course, chaos is
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associated with the existence of &&strange'' invariant sets in phase space, and with sensitive
dependence on initial conditions. In fact, a commonly accepted working de"nition of
chaos is a motion from a deterministic system possessing at least one positive Lyapunov
exponent.
However, these characteristics of chaotic dynamics are not important for the theory

developed in this paper. Rather, we make use of the fact that chaotic signals correspond to
deterministic time series with a sort of statistical complexity that we now make precise.
Consider a stationary chaotic system at steady state. Let x (k) be a discretely sampled

state variable of this system. Consider any statisticE[ f (x)], whereE represents the expected
value. Say we collect a sample of size N�1. Let the mean value of f (x) for that sample be
� f(x

�
)�

�
. We assume (as is widely assumed in experimental work, and as is consistent with

the convergence rate guaranteed by the central limit theorem) that

E[ f (x)]!� f (x
�
)�

�
"O�

1

�N� , (3)

where the order notation is to be interpreted in a statistical sense, i.e.,

a"b#O (�) implies E[(a!b)�]"O (��). (4)

Now, for periodic signals, as well as for quasiperiodic signals, equation (3) still applies in
the sense that the O(1/�N) is actually the smaller or faster converging� quality O (1/N). For
this paper, we de,ne a system to be chaotic if and only if it is deterministic but typical

statistics converge no faster than O (1/�N). This assumption represents our mathematical
description of the &&irregularity'' of chaotic dynamics.
In this paper, we do not use sensitivity to initial conditions except in the sense that, due to

the presence of minute unmodelled e!ects, it e!ectively gives the system a "nite prediction
horizon, with the following consequence. Let two large samples, each of size N�1, be
collected. Each sample consists of consecutive values of x (k), and the two samples are
themselves collected non-concurrently. Under these conditions, we assume that (due to the
"nite prediction horizon and the largeness of N), essentially all elements in the "rst sample
are e!ectively uncorrelated with essentially all elements in the second sample. Under this

assumption, the O (1/�N) error in computing a typical statistic from the "rst sample is

statistically independent of, and identically distributed as, the O(1/�N) error in computing
the same statistic from the second sample.
Finally, it is well known that, as a parameter is varied over an interval, chaotic systems

rarely stay chaotic over the entire interval. However, in our theory, we assume the simplest
case where the system is in fact chaotic over the entire rangeA of the parameter of interest. As
evidenced by the foregoing experimental results with the vibroimpact system (where the
system did pass through several periodic windows) and the simulations of a simple drifting
map later in this paper, it appears that these periodic windows may in many cases not be
important: the main conclusions derived from the theory appear to hold anyway. One way
to view our approach is to note that it is, in some sense, similar to the neglect of dry friction
in the vibration analysis of an airplane wing: it is not that the dry friction does not exist, but
�Note, however, that for quasiperiodic signals with large numbers of frequencies (say of the order of 100 or
more), N may have to be very large before this asymptotic convergence rate is achieved.
AStrictly speaking, the drifting system is not chaotic because it is not at steady state. However, since the drift is

slow, we make the approximation that over intermediate time scales (long compared to fast dynamics, but short
compared to drift dynamics) the di!erence is negligible between the actual fast dynamics and the dynamics of
a system with the drifting parameter frozen at a representative current value.
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rather that the simpler model of viscous friction enables satisfactory description of the
phenomena of interest.

5. THEORY

To begin our theory of tracking, we "rst quantitatively de"ne tracking quality via the
tracking error Q, given by

Q� :"

Mean square value of deviations from the correct underlying curve

Mean square value of deviations of the underlying curve about its own mean value
.

(5)

What the correct underlying curve is will become clear below. Obviously, a drift observer is
useful only if Q is su$ciently smaller than unity.

5.1. NOTATION

We now "x some notation. In what follows, x (k) represents the kth data point in some
record. In the rest of this section, the index k will be used exclusively for this purpose. Each
record has N points. The total number of records is denoted by S. The index n will refer to
the record number in the rest of this section. For each record, a number of features will be
computed. The index i will refer to the feature number. The drifting parameter, as
mentioned earlier, is denoted by �. The average value of � over the entire experiment will be
denoted by �	 . The average value of � over the time duration of record number n will be
denoted by �	

�
. The variance of the �	

�
will be denoted by ��� (we do not assume here that

� varies stochastically; the �� notation is merely for convenience in some later calculations).
Angled brackets will be used to denote a sample average; when necessary, the sample size
will be denoted by a right subscript, as in � ) �

�
.

5.2. ASSUMPTIONS, AVERAGING, AND SIMPLIFICATIONS

We now assume that the drift in the parameter � is small at all times, and always
comparable to �� ; that the number of records collected (S) is large; and that the size of each
record (N) is also large.B These assumptions allow the following simpli"cations.
First, because the net drift is small and the number of records is large, over any one record

the drift is doubly small and neglected. Thus, over any one record, we treat the system as
essentially a stationary system.�

For a chaotic system, following the discussion of section 4, any averages computed over

each record (for calculating the features) converge to their expected values like 1/�N and no
faster. For example,

�x(k)�
�
"�x(k)�

�
#O�

1

�N� ,

BNote that smallness of �� is no serious restriction, since large drift (or a large change in dynamics) is easier to

detect. Largeness of S and N is allowed by slow drift, and is relevant for many systems of practical interest.
�While passage through signi"cant bifurcations can, in principle, lead to violations of this simplifying

assumption, in our experimental studies as well as in the numerical simulations presented later in this paper, such
bifurcations have not been signi"cant. Here, for simplicity, we assume this di$culty away.
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where �x (k)�
�
is the expected value of x (k) for that record. If we compute the averages of

several functions f
�
(x (k)), f

�
(x(k)),2, then for each such function f

�
(x(k))

� f
�
(x(k))�

�
"� f

�
(x (k))�

�
#O�

1

�N� (6)

and no faster, due to chaos.
For periodic or quasiperiodic systems, the averages converge at an asymptotically faster

rate, with

� f
�
(x(k))�

�
"� f

�
(x (k))�

�
#O�

1

N� if no chaos. (7)

For brevity, we now write

� f
�
(x (k))�

�
"fM

�
(�N

�
), (8)

where the explicit dependence on x (k) has been dropped; and the implicit dependence on the
value of the drifting parameter in the record of interest has been shown. We also assume
that fM

�
(�) allows a good local linear approximation,��

fM
�
(�N

�
)"fM

�
(�)#fM 


�
(�	 ) ) (�	

�
!�	 )#O(��� ).

Henceforth, the small O(���) term will be dropped in comparison with O (��) terms.

5.3. TYPICAL DRIFT OBSERVERS

Let us pick any function f
�
(x (k)) as a candidate drift observer. What kind of tracking

quality may we expect? Averaging f
�
over record length N for the nth record, we "nd from

equation (6) that

� f
�
(x(k))�

�
(�N

�
)"fM

�
(�N )#fM 


�
(�N ) ' (�	

�
!�	 )#O�

1

�N� , (9)

where on the left-hand side, the dependence on record number has been explicitly shown.
On the right-hand side of equation (9), the "rst term is a constant, and does not a!ect
tracking quality (see equation (5)). The second term is the correct underlying curve, while
the third term represents random, uncorrelated #uctuations about this curve that come
from "nite-sample averaging of a chaotic process (see section 4). Now the numerator of
equation (5) is trivially seen to be O (1/N), while the denominator is seen to be � fM 


�
(�N )����� ,

giving

Q�"O�
1

� fM 

�
(�N )�����N� .

Assuming, as an observability condition, that � fM 

�
(�N )��"O (1) (and strictly non-zero), we see

that good tracking is possible only if

N�
1

���
. (10)
��We do not assume that fM
�
(�) is di!erentiable. We merely assume that we are in a parameter regime where, in

some small �-range of interest, fM
�
(�) allows a good linear approximation. The coe$cient of the linear term, here

denoted with a prime, can be taken to mean the derivative when a continuous derivative exists.
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Moreover, for su$ciently large N,

QJ

1

���N
. (11)

We do not yet make an explicit connection with the experimental study; note, however,
that such poor convergence (O(1/�N)) is expected to occur in calculations of
autocorrelations as well, compromising tracking quality.

5.4. DETERMINISTIC DYNAMICS, AND AN OPTIMAL DRIFT OBSERVER

We return to equation (1) (with �
�
"0). Consider the "rst of these equations, and assume

for simplicity that the evolution of � (k), as given by the second equation, is given. In other
words, consider a dynamical system of the form

z
���

"F (z
�
, �

�
, k), (12)

where �
�
is a well-de"ned (but unknown), slowly varying function of k with small overall

variation.
In what follows, the explicit dependence of the function F on k can be dropped with no

loss of generality.�� We then have

z
���

"F (z
�
, �

�
). (13)

Since the overall variation in � is small, we write equation (13) as

z
���

"F (z
�
, �N )#F�(z�, �N ) (��

!�N )#O (��� ), (14)

where F� is the partial derivative of F with respect to �. For the nth record we write
equation (14) as (dropping the small O (��� ) term as before)

z
���

"F(z
�
, �N )#F� (z�, �	 )(�	 �!�	 ). (15)

Since �	 is a constant for the entire experiment, we can consider F andF� simply as functions,
of z

�
. Let these functions be represented, to satisfactory accuracy, as linear combinations of

a "nite number of basis functions:

F (z, �	 )"F (z)"
��
�

���

a
�
g
�
(z), F� (z, �	 )"F� (z)"

��
�

���

b
�
h
�
(z),

whereM
�
andM

�
are much smaller than either S orN, and are treated as O(1). Substituting

the above into equation (15), we obtain

z
���

"

��
�

���

a
�
g
�
(z

�
)#

��
�

���

b
�
h
�
(z

�
)(�	

�
!�	 ). (16)
��This is possible since one can always write equation (12) in an autonomous form by de"ning a new variable
u
�
"�x�

�
, k��. In practice, this situation arises when such systems are studied using delay-co-ordinate embedding,

in which case the explicit k-dependence disappears.
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Averaging the above over one record, we obtain

�z
���

�
�
"

��
�

���

a
�
�g

�
(z

�
)�

�
#

��
�

���

b
�
�h

�
(z

�
)�

�
(�	

�
!�	 ). (17)

Now, note that

�z
���

�
�
"�z

�
�
�
#O�

1

N�,
because only the two endpoints in the sum are di!erent. However, z

�
itself is trivially

a function of z
�
, and so can be absorbed into the "rst sum on the right-hand side of

equation (17), to yield

��
�

���

a
�
�g

�
(z

�
)�

�
#

��
�

���

b
�
�h

�
(z

�
)�

�
(�	

�
!�	 )"O�

1

N� , (18)

where a
�
"!1 and g

�
(z)"z. We now identify the functions g and h in equation (18) with

the functions f in the formulas of equations (6)}(8). Accordingly,

�g
�
(z

�
)�

�
"�g

�
(z

�
)�

�
#O�

1

�N�"gN
�
(�	

�
)#O�

1

�N� (19)

and

�h
�
(z

�
)�

�
"�h

�
(z

�
)�

�
#O�

1

�N�"h

�
(�	

�
)#O�

1

�N� , (20)

where the dependence has been shown explicitly of the average on the value of � in the
record of interest.
Substituting equation (19) into the "rst sum in equation (18), we obtain

��
�

���

a
�
�g

�
(z

�
)�

�
"

��
�

���

a
�
gN
�
(�	

�
)#O�

1

�N� . (21)

Similarly, substituting equation (20) into the second sum in equation (18), we obtain

��
�

���

b
�
�h

�
(z

�
)�

�
(�	

�
!�	 )"

��
�

���

b
�
h

�
(�	

�
)(�	

�
!�	 )#O�

��
�N� . (22)

On directly taking the limit as NPR in equation (18), we obtain

��
�

���

a
�
gN
�
(�	

�
)#

��
�

���

b
�
h

�
(�	

�
) (�	

�
!�	 )"0. (23)

We now come to a crucial argument. Substituting equations (21)}(23) into equation (18),
we "nd that the following relationship must hold:

O�
1

�N�#O�
��

�N�"O�
1

N�. (24)
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Equation (24) may seem contradictory, since the terms do not appear to balance. The
apparent contradiction can be resolved, however, as follows. The "rst term on the left, which
comes only from equation (21), though potentially much bigger than the other two, must
balance them by construction. Thus it can be at most as big as the bigger of the two. Using
this, we rewrite equation (21) as

��
�

���

a
�
�g

�
(z

�
)�

�
"

��
�

���

a
�
gN
�
(�	

�
)#O�

��
�N�#O�

1

N� . (25)

It is worth pausing to carefully examine equation (25), obtaining which was the aim of the
preceding asymptotic arguments. It demonstrates a key idea of this paper: while typical
averages of dynamical quantities converge slowly due to the presence of chaos, the presence
of underlying deterministic dynamics allows the existence of a special quantity whose
average converges much faster. The rest is straightforward.
Suppose that by chance, we pick the functions f

�
to be the same as the functions g

�
.

And suppose that the linear combination of the f
�
that we decide to use for our

drift observer happens to be the same as the sum of the left-hand side of equation (25).
Then, it only remains to write the right-hand side of equation (25) as (again dropping
O(��� ) terms)

drift observer"
��
�

���

a
�
gN
�
(�	 )#

��
�

���

a
�
gN 

�
(�	 ) (�	

�
!�	 )#O�

��
�N�#O�

1

N� . (26)

Equation (26) is of the form

drift observer"A#B (�	
�
!�	 )#O�

��
�N�#O�

1

N� . (27)

where A and B are constants for a given experiment.A has no in#uence on tracking quality.
Assuming, as an observability condition, that B"O (1) and non-zero, we see that the
denominator in equation (5) is simply B���� , while the numerator is on the order of

���
N

#

1

N�
"

1#N���
N�

,

giving the order of magnitude estimate

Q�&

1#N����
N����

. (28)

Since we need Q�1 for good tracking, and the numerator in equation (28) is at least as
big as unity, tracking is not possible unless N�����1 or N�1/�� (compare with
equation (10) for typical drift observers). In the range

1

��
�N�O�

1

���� , (29)
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we also have

QJ

1

��N
, (30)

an O(�N) improvement over typical drift observers (equation 11)).
The rangeN"O(1/��� ) is a transition region. Finally, forN�1/��� , the second term in the

numerator of equation (28) dominates and we have

QJ

1

�N
, (31)

which is an O (1/��) improvement over typical drift observers (equation 11)).
Based on the foregoing analysis, we conclude the following. The presence of chaotic

dynamics makes tracking di$cult. For typical drift observers, tracking quality is poor and
data requirements are high (N needs to be large). For a given sampling rate in the data
acquisition system, &&high'' data requirements imply that for typical drift observers drift
cannot be tracked unless it is very slow. In contrast, the underlying deterministic dynamics
allows the existence of at least one drift observer which may be called optimal in that both
tracking quality and data requirements are much lower for this drift observer than for
typical drift observers.

5.5. CONNECTION WITH EXPERIMENT

At this stage, the connection between the experimental study and the foregoing theory
has not yet been established. Some qualitative points are worth noting, however.

5.5.1. ;niqueness

In the experimental study, it was found that the smallest eigenvalue of the system was
much smaller than the next smallest one, showing empirically that the choice of a smooth
tracking metric with large overall variation was unequivocal. In the foregoing analysis, we
"nd that there is at least one good tracking metric. Is there perhaps only one good tracking
metric? Our experiment suggests that the answer is yes; but our theory does not address this
question. We will draw some empirical conclusions about this question below.

5.5.2. Equivalence

In the foregoing analysis, we have studied a certain measure of tracking quality. Is
maximizing this tracking quality the same as maximizing smoothness and overall variation
as quanti"ed by equation (2)? We will address this question below.

5.5.3. ;se of autocorrelations

Finally, in the experimental study we used autocorrelations, while in the theory we used
the state variables directly. Does the theory still apply to the experiment? We will address
this question in Appendix A.

5.6. EQUIVALENCE OF TRACKING QUALITY AND HEURISTIC OPTIMALITY CRITERION

So far we have assumed that the number of records, S, is large and "xed; that it is large
allowed us to treat the drifting parameter as constant over each record. Now, imagine that,
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we are free to hold the � variation �� as well as the record size N constant, while increasing
the number of records,AA S.
Consider a candidate drift observer y (n) (where, as before, n refers to record number). Let

y (n)"a#�	
�
#e

�
, (32)

where a is an undetermined constant, �	
�
is the correct underlying drift process (or the true

observer), and the e
�
's represent zero mean, mutually independent (see section 4), random

#uctuations that arise due to the "nite-length averaging involved in computing the drift
observer. Let the r.m.s. value of the e

�
and �

	
. For simplicity, let E (e

�
e
�
)"�

��
��
	
, where

�
��
"1 if i"j, and zero otherwise. That is, let the expected size of the #uctuation be

independent of the record number. Observe that



�
���

e
�
"O (�S�

	
) (33)

and


��
�
���

e
�
e
���

"O (�S��
	
). (34)

Since we include the constant a in equation (32), we assume with no loss of generality that



�
���

�	
�
"0. (35)

The tracking quality for this case (see equation (5)) is

Q�"

��
	

���
. (36)

Since the underlying locally averaged drift process is smooth, we write

�	
���

"�	
�
#

�	 

�
S

#O�
1

S�� , (37)

where �	 

�
is a local rate of change of the drifting parameter that is independent of the

mesh-re"nement S. In other words, if the time duration of the entire experiment is scaled to
unity, then the width of each record in that slow time is 1/S; and �	 


�
is the derivative of the

drifting parameter with respect to that slow time, independent of record width.
Since, in the heuristic tracking procedure of section 2.3, the columns of > were shifted to

zero mean, we have (by summing equation (32) using equations (33) and (35))

a"O�
�
	

�S�. (38)

Finally,



�
���

ae
�
"O (��

	
),



�
���

a�	
�
"0,



�
���

�	
�
e
�
"O (�S���	

). (39}41)
AAIn the context of our experiment this would correspond, for example, to having di!erent batteries that drained
over 7, 70, 700, 7000 h,2, while keeping the initial battery voltage and the size of each data record "xed. In
principle, this could be achieved by using batteries with 10, 100, 1000,2, the capacity in amp-hours of the original
battery. Such experiments are impractical, but imagining them helps us develop our asymptotic theory.
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Now consider equation (2). The numerator is


��
�
���

(�	
���

e
���

!�	
�
!e

�
)�,

which after some manipulations is

2S��
	
!e�

�
!e�

�
#O(�S��

	
)#


��
�
���

(�	 

�
)�

S
. (42)

Note that


��
�
���

(�	 

�
)�

S
"



�
���

(�	 

�
)�

S
#O�

1

S�"(�	 
)�#O�
1

S� ,
for some constant (�	 
)� that is "xed for the experiment. In equation (42), on dropping the
smaller e� terms as negligible compared to the dominant 2S��

	
, we therefore have

(�	 

�
)#2S��

	
. (43)

The denominator of equation (2) is



�
���

(a#�	
�
#e

�
)�"



�
���

�a�#(�	
�
)�#e�

�
#2ae

�
#2a�	

�
#2�	

�
e
�
�,

"O (��
	
)#S���#S��

	
#O(��

	
)#0#O(�S���	

),

using equation (38), the de"nition of ��, the de"nition of �
	
, equations (39), (40) and (41),

respectively. Thus, the denominator of equation (2) is

S���#S��
	
#smaller terms. (44)

By equations (43) and (44), for large S, the heuristic optimality criterion is seen to minimize

(�	 
)�#2S��
	

S���#S��
	

,

where the e!ect of the parameter variation rate �	 

�
is seen to become smaller and smaller for

bigger and bigger S. On dropping this small term as well, it is "nally clear that for large S the
heuristic optimality criterion minimizes a function that approximately equals

��
	

���#��
	

.

Minimizing the above quantity is the same as maximizing its reciprocal,

���#��
	

��
	

"

���
��
	

#1.
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Dropping the constant, maximizing ���/��
	
is in turn the same as minimizing its reciprocal

��
	
/��� . Comparing this with equation (36) we conclude that, asymptotically for large S, the

heuristic optimality criterion is in fact identical to optimal tracking quality as given by
minimizing equation (5). At this point, we make an empirical observation about uniqueness
(question 1, section 5.5).
Section 5.4 shows, by construction, that there is at least one drift observer whose tracking

quality is much better than that of typical ones. This subsection shows that maximizing
tracking quality is equivalent to the heuristic optimality criterion (section 5.5.2), assuming
that using autocorrelations does not cause any di$culty (section 5.5.3). Therefore,
pending resolution of the autocorrelations issue (section 5.5.3), we have shown by
construction that there is at least one drift observer that satis"es the heuristic criterionmuch
better than others. Meanwhile, in the numerical results of section 2.3, the smallest
eigenvalue is much smaller than the others, and the choice of a good drift observer is
therefore unequivocal and robust, in the sense that small changes in the choice of optimality
criterion will only cause small changes in the choice of drift observer. Thus, theory shows
that there is at least one really good drift observer, and numerics show that there is only one.
Pending the resolution of the question in section 5.5.3, therefore, we can empirically
conclude that the drift observer found from theory is e!ectively the same as the one found
using heuristics.
This last remaining gap in the theory (see section 5.5.3) is addressed in Appendix A. In the

next section, we proceed to numerically validate the theory.

6. STUDY OF A DRIFTING CHAOTIC MAP

The theory presented in the previous section provides a feasible explanation for why the
tracking method works, based on strong simplifying assumptions about the dynamics and
some asymptotic arguments based on those assumptions. In experiments, the asymptotic
validity of the arguments used above cannot be veri"ed easily because it is di$cult to vary
the drift rate over several orders of magnitude (see footnote - in section 5.6). We, therefore,
attempt to validate the theory using extensive numerical simulations. To better understand
the tracking method, we numerically study a slowly drifting logistic map, given by

x
���

"�
�
x
�
(1!x

�
),

where �
�
is a slowly varying function of k (we arbitrarily take a half sinusoid of small

amplitude, within a chaotic range). The features used are the record-averages of x
�
and x�

�
,

these being clearly relevant to the dynamics.
The drifting logistic map is similar to the experimental system in the following key ways.

The graphs of the features are non-smooth and provide poor tracking; they have a smooth
linear combination that is a good tracking metric; this tracking metric is found by solving
the same eigenvalue problem as earlier. However, in this case, it is possible to independently
control the key features of the system (net drift, and drift rate).
In the numerical study, the parameter � drifted slowly, in a half-sinusoid, between the

values of 3)805 and 3)820: apparently chaotic dynamics occurs in this range. The number of
records S was "xed at 60. Several simulations were performed. The number of data points
N in each record was changed from 81, through increasing powers of 3, to 59 049. In each
run, for each record, the values of x and x� were averaged to obtain features. The method of
section 2.3 was also used to obtain the optimal drift observer. The results are shown in
Figures 3 and 4.



Figure 3. (a)}(g) &&Typical'' drift observers x	 and x�, mean-subtracted and scaled, plotted against record number.
The variable quantity is record length N, mentioned in the individual "gures. The two curves ( ) are nearly
indistinguishable for each N. The smooth half sinusoid is the true parameter drift, shown for comparison. N"(a)
81, (b) 243, (c) 729, (d) 2187, (e) 6561, (f ) 19)683, (g) 59 049 (h) log}log plot of tracking quality log

��
Q versus log

��
N.

Tracking is poor, at least in this range of N. The dashed gray line has slope !�
�
.
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In Figure 3, the &&typical'' drift observers xN and x� are shown, mean-subtracted and
normalized as always, for di!erent simulations. It is seen that good tracking is not possible

even for fairly largeN. The scaling is even worse than the 1/�N predicted by the theory for
very large N; this may be because N is not large enough. For the same range of N, the
optimal tracking method of section 2.3 is seen (see Figure 4) to provide excellent tracking.



Figure 4. (a)}(g) Optimal drift observer of section 2.3, scaled, plotted against record number. The variable
quantity is record length N, mentioned in the individual "gures. The smooth half sinusoid is the true parameter
drift, shown for comparison. N for (a)}(g) is the same as in Figure 3. (h) log}log plot of tracking quality log

��
Q

versus log
��
N. The dashed gray line has slope !1. Tracking is excellent, and tracking quality is proportional to

1/N, as predicted by theory, and over a large scaling region.
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Moreover, as predicted by the theory, the tracking quality is roughly proportional to 1/N,
for large N varying over two orders of magnitude.

7. IS CHAOS NECESSARY?

Is chaos necessary for the tracking method to succeed?
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7.1. QUASIPERIODIC DYNAMICS

Our theory assumes deterministic chaos. However, what happens if the method of section
2.3 is applied directly to data from a (say) quasiperiodic system? By the assumptions of our
theory, the method is irrelevant for quasiperiodic systems because statistics converge fast
already. Computed features are all already smooth, with only O(1/N) #uctuations instead of

the O(1/�N) #uctuations encountered with chaotic dynamics. No special linear
combination of the features stands out as dramatically smoother than all the rest. However,
actually applying the algorithm to quasiperiodic data leads to an interesting result: the
optimal tracking metric does not, in fact, track the drifting parameter well.BB To explain this
apparent failure, we present some examples.

7.1.1. Example 1

First, imagine that in an experiment the parameter � drifts linearly with time, such that
(say) �	

�
"(n!21)/400. Let the features be computed to perfect accuracy. Let these features

be nearly linear functions of time, which here is the same as �. That is, we retain the small
higher order terms that were previously neglected as small compared to the random errors
that are now missing. For de"niteness, assume that the features are the following arbitrarily
selected�� polynomials:

p
�
"�#exp(1)5)��!6)0��, p

�
"�!���!�5��, p

�
"�#ln 7��#�2��.

(45)

Let n"1, 2,2, 41. Applying the tracking method to the &&features'' p
�
, p

�
, p

�
above, we

obtain the results shown in Figure 5(a, b).
In Figure 5(a), the features themselves are shown (mean-subtracted and scaled). Each

makes a reasonable drift observer if the drift is small enough. In Figure 5(b), the results of
applying the tracking method are shown. Superimposed on the plot is a nearly
indistinguishable scaled plot of the cosine function over half a period.

7.1.2. Example 2

Now let the variation of � not be linear with time. Accordingly, de"ne the intermediate
variable �	

�
"(n!21)/400, and let the computed features be the nearly, but not quite,

identical quantities:

p
�
"cos(20�)#exp(1)5)��!6)0�	, p

�
"cos(20�)!���!�5�	 ,

p
�
"cos(20�)#ln 7��#�2�	. (46)

Application of the tracking procedure yields the results shown in Figure 5(c, d). In
Figure 5(c), note that p

�
through p

�
are almost indistinguishable. Nevertheless, the small

but smooth di!erences between them are enough to let the minimization procedure pick out
another cosine (a full period in this case), as shown in Figure 5(d).
BBFor example, with vibration data from a gearbox condition monitoring experiment not described here, the
results obtained appeared to be roughly like a cosine function. However, the vibration signature from a gearbox,
with slowly accumulating gear tooth damage, should be steady for a long time and then change rapidly soon before
failure.

��Instead of arbitrarily selecting the coe$cients of �� and �� in these polynomials, we could have randomly
generated them, to obtain the same results. The choice made here ensures linear independence.



Figure 5. (a) Features for example 1, mean-subtracted and scaled. (b) Results from application of the tracking
method. Also plotted is half a period of a cosine, scaled for comparison. (c) Features for example 2, mean-
subtracted and scaled. (d) Results from application of the tracking method. Also plotted is a full period of a cosine,
scaled for comparison. (e) Features for example 3, mean-subtracted and scaled. (f ) Results from application of the
tracking method. Also plotted is a full period of a cosine, scaled for comparison.
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7.1.3. Example 3

Finally, let the computed features be the nearly, but not quite, identical quantities:

p
�
"exp(!100�)#exp(1)5)��!6)0�	, p

�
"exp(!100�)!���!�5�	 ,

p
�
"exp(!100�)#ln 7��#�2�	. (47)
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Application of the tracking procedure yields the results shown in Figure 5(e, f ). In
Figure 5(e), p

�
}p

�
are almost indistinguishable. Nevertheless, the minimization procedure

picks out a cosine yet again, as shown in Figure 5(h).

7.1.4. Discussion

We showed above that the tracking procedure can give misleading results, such as
a cosine function regardless of what the actual variation in � is, if there is no e!ective
randomness in the computed statistics. That cosines might be obtained in this manner is
not, in retrospect, surprising. The continuous version of the di!erential operator=�= is
nothing but !(d/dx�) with zero-slope boundary conditions; and the cosines are simply the
eigenfunction of

!

d�u

dx�
"�u, u

�
(0)"u

�
(1)"0.

Due to the excessive smoothness of the features, too many smooth functions are available to
the minimization procedure, and the cosine is chosen.��� In contrast, for chaotic systems,
where slowly converging statistics introduce random errors in the computed features, there
is only one special choice of smooth function, and the minimization procedure is forced to
choose it.
Thus, it is clear that deterministic chaos, at least during a substantial portion of the entire

experiment, is a requirement for the tracking method to work. In this sense, the method is
irrelevant as far as the problem of tracking drift in quasiperiodic systems is concerned. Note,
however, that irrelevance to quasiperiodic systems is not a weakness. The very smoothness
that makes the tracking method inapplicable for non-chaotic systems also ensures that for
such systems almost any feature is a good drift observer. Conversely, the new tracking
method directly exploits the very feature that makes it di$cult to track drift in chaotic
systems.

7.2. STOCHASTIC DYNAMICS

In the previous subsection, it was explained as to why the lack of &&irregular'' dynamics
(see also section 4) in quasiperiodic systems can make the present tracking method give
misleading results. In contrast to that situation, we now consider stochastically forced
systems, whose dynamics is irregular but not deterministic. However, we expect that the lack
of some especially smooth tracking metric will make the method perform poorly, with

tracking quality scaling as 1/�N instead of 1/N (for su$ciently large N).
To this end, consider the stochastically forced drifting logistic map, given by

x
���

"z
�
#y(z

�
)�

�
,

where the second term represents the so far ignored �
�
term of equation (1), z

�
is the

deterministic part of the map, given by

z
�
"�

�
x
�
(1!x

�
),

y(z
�
) is de"ned as

y (z
�
)"�

	
min(z

�
, 1!z

�
)

���In some cases, the results may not resemble cosines quite so strongly. However, they may still fail to resemble
the actual underlying variation of �.



Figure 6. (a)}(g) Optimal drift observer of section 2.3, scaled, plotted against record number, for the
stochastically forced drifting logistic map. As before, record length N is given in each "gure. The smooth half
sinusoid is the true parameter drift.N"(a) 120, (b) 360, (c) 1080, (d) 3240, (e) 9720, (f ) 29 160, (g) 87 480. (h) log}log
plot of tracking quality log

��
Q versus log

��
N. The dashed gray line has slope !�

�
. Tracking is poorer, with

tracking quality roughly proportional to 1/�N for large N, as predicted by theory.
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to ensure boundedness of solutions, and �
�
is a random uniformly distributed between !1

and 1. For this system, we redid the numerical experiment of section 6, with � varying in
exactly the same way as before (half sinusoid), with the same number of records (60), but
with somewhat larger values of N.
The results are shown in Figure 6. It is seen in the "gure that, for this stochastic system,

parameter tracking is not as good as for the deterministic drifting logistic map of section 6.
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In particular, for largeN, the tracking quality (or error) improves roughly like 1/�N instead
of 1/N. Moreover, this slower 1/�N scaling itself shows up only for signi"cantly larger
N than the 1/N scaling does in the deterministic case. Both of these results are consistent
with our theory.

8. CONCLUSIONS AND FUTURE WORK

We have presented a method of optimal tracking for chaotic dynamical systems with
a parameter that drifts slowly and over a small range. The method relies on the existence of
underlying deterministic behavior in the dynamical system, yet neither requires a system
model nor develops one.
We have described an experimental study, where a heuristic optimality criterion gave

good tracking performance. We have also developed a theory that explains the success of
the tracking method for chaotic systems.
By our theory, for deterministic chaotic systems, typical drift observers provide poor

tracking performance and require the drift to be particularly slow in order to be successfully
detected. In contrast, the optimality criterion seeks out a special drift observer that both
provides better tracking performance and allows the drift to be appreciably faster. For
periodic or quasiperiodic systems (no chaos), good tracking is easily achievable and the
present method is irrelevant. For stochastic systems (no determinism), the optimal tracking
method does not asymptotically improve tracking performance.
Exhaustive numerical simulations of a simple drifting chaotic map, "rst without and then

with stochastic forcing, have been used to validate the theory.
Future work may be directed towards broader experimental validation of the tracking

method for a variety of drifting chaotic systems. On the theoretical front, the extreme
simplifying assumption of negligible in#uence of bifurcations (such as passage through
periodic windows) might be relaxed. In the experiment and simulations, such periodic
windows do not appear to have seriously degraded the performance of the tracking method.
Finally, it seems that in the determination of the tracking metric (which relies on the
underlying determinism in the system), we are uncovering some information about the
dynamics of the system; it is conceivable that a similar calculation might turn out to have
applications in parameter estimation for non-linear systems as well.
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APPENDIX A: AUTOCORRELATIONS AS GENERIC CHOICES OF FEATURE VECTORS

For the logistic map, it is easy to guess that x	 and x� will be useful for tracking drift.
However, in a general problem where a model is not available a priori, how should feature
vectors be selected? In particular, are autocorrelations expected to work in the context of
the present theory (question 3, section 5.5)?
As is well known (see e.g., reference [33]), delay co-ordinate embedding can be used to

reconstruct the phase spaces of generic non-linear systems. Given the strain gauge output
time series x (1), x(2),2 and a positive integer delay d, a delay-reconstructed vector of the
form

Z
�
"�x (k), x (k!d), x(k!2d),2, x (k!nd)��

can be used as an (n#1)-dimensional state vector for the system. The dynamics of the
system itself can then be looked upon as a map of the form

Z
���

"F (Z
�
).

We consider here a slight variant of the above, using the change of variables
X

�
"Z

���
!Z

�
, and assume that there is a map of the form

X
���

"G (X
�
).

Since X is (n#1)-dimensional, the dimension of the map is also n#1. For the special
case where the prediction time step is equal to the delay d, n components of the map are
trivial: the pth element of X

�
is mapped exactly to the (p#1)th element of X

���
, for

p"1, 2,2, n. Thus, only one component of the map is non-trivial.
Since X

�
"Z

���
!Z

�
, we de"ne the variable

x
�
"z

�
!z

��

,

noting that the expected value of x
�
is zero. Now, let us assume that there is a second order

polynomial relationship of the form

x
���

"�
�
#

�
�

���

�
�
x
���


#

�
�
���

�
�
���

�
��
x
���


x
���


, (A.1)
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for some constants �
�
, �

�
and �

��
. If we average both sides, we "nd that

0"�
�
#

���
�

���

b
�

�x (k)x (k!md)�, (A.2)

for some b
�
, b

�
, b

�
,2, b

���
that depend on the constant �

��
(the "rst order terms average to

zero).
For a drifting system with a parameter �, we would then have

0"�
�
(�)#

���
�

���

b
�
(�) �x (k)x (k!md )�.

Thus, this system follows the prescription of the analysis in this paper (except that some of
the averaged quantities in equation (A.1) turn out to be identical, and are combined in
equation (A.2)).
The foregoing discussion answers the question of section 5.5.3: we can expect

autocorrelations, combined with the tracking method presented and analyzed in this paper,
to work well in a variety of systems with chaotic dynamics. The success of the method will
be limited by the accuracy to which a second order polynomial in several delayed variables
can approximate the underlying dynamics of the system. As evidenced, at least, by the
experimental study, this accuracy may be acceptable in many cases.
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